Joshua Zahl & 王虹 - 三维挂谷集猜想

2.9万
8
2025-03-08 01:09:50
正在缓冲...
424
55
650
148
https://www.slmath.org/workshops/1089/schedules/37025 The Kakeya set conjecture in three dimensions March 3rd, 2025 (03:30 pm) - March 3rd, 2025 (04:30 pm) Speakers: Joshua Zahl, University of British Columbia Abstract: A Besicovitch set is a compact subset of R^n that contains a unit line segment pointing in every direction. The Kakeya set conjecture asserts that every Besicovitch set in R^n has Minkowski and Hausdorff dimension n. I will discuss some recent progress on this conjecture, leading to the resolution of the Kakeya set conjecture in three dimensions. This is joint work with Hong Wang. https://www.slmath.org/workshops/1089/schedules/37196 The Kakeya set conjecture in three dimensions II March 6th, 2025 (02:00 pm) - March 6th, 2025 (03:00 pm) Speakers: Hong Wang, New York University, Courant Institute Abstract: Given any set of delta-tubes in R^3, we can factor tubes into clusters, such that within each cluster, the tubes are dense and fill out a convex set, and these convex sets are essentially disjoint. We discuss some new aspects of the argument, putting into a broader context of projection theory. This is joint work with Josh Zahl.
La découverte est le privilège de l’enfant.
Analysis
(2/8)
自动连播
22.8万播放
简介
王虹 - Restriction Estimates Using Decoupling Theorem and Incidence Estimates ...
56:29
Joshua Zahl & 王虹 - 三维挂谷集猜想
王虹 - ℝ³ 中的挂谷集
56:33
王虹 - ℝ³ 里的挂谷集
57:45
邓煜 - 希尔伯特第六问题:粒子与波
48:34
王艺霖 - Brownian loop measure on Riemann surfaces and length spectra
53:11
王艺霖 - The Brownian loop measure on Riemann surfaces and applications to ...
53:53
Hannah Cairo - Mizohata-Takeuchi猜想的反例
53:16
客服
顶部
赛事库 课堂 2021拜年纪